Friday, November 22, 2013

Contact - electrical thermometers

Contact - electrical thermometers

1. Resistance thermometers

Principle is that the electrical resistance of the sensors is strongly temperature dependent, and changes with temperature in a predictable way.
Platinum Resistance
Platinum resistance sensor|
Glass coated 100 ohm Pt100 platinum resistance sensor
Standard Platinum Resistance Thermometers (SPRTs) are the most accurate.
However, they are only suitable for laboratory use, and in industry more rugged industrial platinum resistance thermometers are used, variously known as IPRTs, Pt100s, RTDs (resistance temperature detectors).
In a thermometer, the high purity platinum wire sensor is located near the tip of a closed protective tube, to make a probe which can be inserted into the measurement environment.
Most sensors are made with two wires emerging from the instrument, the resistance of these wires is included in the measurement and errors of a few °C may result.
Some compensation for the lead resistances can be achieved by connecting a third wire to one side of the sensor (3-wire connection), but best accuracy requires four wires, two for passing the current and two for sensing the voltage across the Pt100 resistance.
Good sensitivity can be achieved: measurements routinely made with a precision of better than a thousandth part of 1°C.

Pt100/RTD sensor
Some Pt100/RTD sensors suitable for insertion in steel protective tubes or on flat surfaces. The smallest are about 1 mm in diameter.

Thermistors
Thermistors for use in current limiting circuits
Thermistors for use in current limiting circuits 
Semiconducting materials such as thermistors are very temperature sensitive and resistance increases very strongly as the temperature falls.Well suited for use in small probes with fast response, e.g. as current limiters in electronic circuits and in medical thermometry, where good sensitivity is achieved over limited temperature ranges.
Most common are negative temperature coefficient (NTC) types.
Since resistances are large, generally several kilohms, 2-wire connections can usually be used without significant error. Thermistors are not standardised, and the manufacturer’s specification must be referred to.

Friday, November 8, 2013

DC Generator working principle





An electrical generator is a device that converts mechanical energy to electrical energy, generally using electromagnetic induction. The source of mechanical energy may be a reciprocating or turbine steam engine, water falling through a turbine or waterwheel, an internal combustion engine, a wind turbine, a hand crank, or any other source of mechanical energy.
The Dynamo was the first electrical generator capable of delivering power for industry. The dynamo uses electromagnetic principles to convert mechanical rotation into an alternating electric current. A dynamo machine consists of a stationary structure which generates a strong magnetic field, and a set of rotating windings which turn within that field. On small machines the magnetic field may be provided by a permanent magnet; larger machines have the magnetic field created by electromagnets.

The energy conversion in generator is based on the principle of the production of dynamically induced e.m.f. Whenever a conductor cuts magneticic flux , dynamically induced e.m.f is produced in it according to Faraday's Laws of Electromagnetic induction.This e.m.f causes a current to flow if the conductor circuit is closed. Hence, two basic essential parts of an electrical generator are (i) a magnetic field and (ii) a conductor or conductors which can so move as to cut the flux.
Generator Construction:
Simple loop generator is having a single-turn rectangular copper coil rotating about its own axis in a magnetic field provided by either permanent magnet or electro magnets.In case of without commutator the two ends of the coil are joined to slip rings which are insulated from each other and from the central shaft.Two collecting brushes ( of carbon or copper) press against the slip rings.Their function is to collect the current induced in the coil. In this case the current waveform we obtain is alternating current ( you can see in fig). In case of with commutator the slip rings are replaced by split rings.In this case the current is unidirectional.
Components of a generator:
Rotor: In its simplest form, the rotor consists of a single loop of wire made to rotate within a magnetic field. In practice, the rotor usually consists of several coils of wire wound on an armature.
Armature: The armature is a cylinder of laminated iron mounted on an axle. The axle is carried in bearings mounted in the external structure of the generator. Torque is applied to the axle to make the rotor spin.
Coil: Each coil usually consists of many turns of copper wire wound on the armature. The two ends of each coil are connected either to two slip rings (AC) or two opposite bars of a split-ring commutator (DC).
Stator: The stator is the fixed part of the generator that supplies the magnetic field in which the coils rotate. It may consist of two permanent magnets with opposite poles facing and shaped to fit around the rotor. Alternatively, the magnetic field may be provided by two electromagnets.
Field electromagnets: Each electromagnet consists of a coil of many turns of copper wire wound on a soft iron core. The electromagnets are wound, mounted and shaped in such a way that opposite poles face each other and wrap around the rotor.
Brushes:The brushes are carbon blocks that maintain contact with the ends of the coils via the slip rings (AC) or the split-ring commutator (DC), and conduct electric current from the coils to the external circuit.
How DC generator works?
The commutator rotates with the loop of wire just as the slip rings do with the rotor of an AC generator. Each half of the commutator ring is called a commutator segment and is insulated from the other half. Each end of the rotating loop of wire is connected to a commutator segment. Two carbon brushes connected to the outside circuit rest against the rotating commutator. One brush conducts the current out of the generator, and the other brush feeds it in. The commutator is designed so that, no matter how the current in the loop alternates, the commutator segment containing the outward-going current is always against the "out" brush at the proper time. The armature in a large DC generator has many coils of wire and commutator segments. Because of the commutator, engineers have found it necessary to have the armature serve as the rotor(the rotating part of an apparatus) and the field structure as the stator (a stationary portion enclosing rotating parts)

Operating principle of ammeters and voltmeters

Introduction:

Ammeter
Ammeter


Voltmeter
Voltmeter

In our day today life, many times we require to measure different electrical quantities like current, voltage, resistance, etc. While doing experiment, there is necessity of multimeter. As we have already discussed about multimeter, how it measures different electrical quantities like electrical current, voltage, resistance, etc. But the basic instruments for the measurement of electric current and voltage are ammeters and voltmeters respectively.
Let us discuss these instruments one by one, operating principle (working principle) of ammeters and voltmeters, finally major differences between ammeters and voltmeters.

Operating Principle:

Analog ammeters and voltmeters are classed together as there are no fundamental differences in their operating principles. The action of all ammeters and voltmeters, with the exception of electrostatic type of instruments, depends upon a deflecting torque produced by an electric current .in an ammeter this torque is produced by a current to be measured or by a fraction of it. In a voltmeter this torque is produced by a current which is proportional to the voltage to be measured. Thus all analog voltmeters and ammeters are essentially current measuring devices.
The essential requirement of measuring instruments are (i) that its introduction into the circuit, where measurements are to be made, does not alter the circuit conditions ;(ii)the power consumed by them for their operation is small.

Ammeters:

Ammeters are connected in the series with the circuit whose current is to be measured. The power loss in an ammeter is (I^2.Ra) where I is the current to be measured Ra is the resistance of the ammeter therefore ammeter should have low electrical resistance so that they cause a small voltage drop and consequently absorb small power.

Voltmeters:

Voltmeters are connected in parallel with the circuit whose voltage is to be measured .the power loss in voltmeter is (V^2/Rv), where V is the voltage to be measured and Rv is the resistance of the voltmeter. Therefore voltmeters should have a high electrical resistance, in order that the current drawn by them is small and consequently the power consumed is small.

Difference between Ammeters and voltmeters:

 Parameters
Ammeter
Voltmeter
Connection It is to be connected in series mode It is to be connected in parallel mode
Resistance It has comparatively low resistance It has high resistance
Uses It is used to find the amount of current flowing in the circuit It is used to find the potential difference in the circuit
Circuit Circuit must be disconnected in order to attach the ammeter Circuit does not need to be disconnected
Accuracy Considered as less accurate Considered as more accurate compared to ammeter